ORACLE DBMS PACKAGE

Pag: 1

DBMS_ALERT

The DBMS_ALERT package provides support for notification of database events. You can use

DBMS_ALERT to automatically detect that an event occurred, and then notify any process which is waiting

for a signal from that alert. Many DBMS_ALERT programs perform at length, are not case−sensitive, and

should not start with ORA$.

REGISTER procedure
The REGISTER procedure adds your session and the specified alert to the master registration list. A session

can register its interest in any number of alerts. The specification is:

PROCEDURE DBMS_ALERT.REGISTER (name IN VARCHAR2);

REMOVE procedure
The REMOVE procedure removes the specified alert for the current session from the registration list. After a

call to REMOVE, your application will no longer respond to the named alert when issued by SIGNAL. The

specification is:

PROCEDURE DBMS_ALERT.REMOVE (name IN VARCHAR2);

REMOVEALL procedure
The REMOVEALL procedure removes all alerts for the current session from the registration list. After a call

to REMOVEALL, your application will no longer respond to any alerts issued by SIGNAL. The specification

is:

PROCEDURE DBMS_ALERT.REMOVEALL;

SET_DEFAULTS procedure
Use the SET_DEFAULTS procedure to set the amount of time (in seconds) for the POLLING_INTERVAL,

which applies when DBMS_ALERT goes into a polling loop. The specification is:

PROCEDURE DBMS_ALERT.SET_DEFAULTS (sensitivity IN NUMBER);

SIGNAL procedure
The SIGNAL procedure signals that an alert has been fired and passes a message to all sessions currently

having registered interest in the alert. The specification is:

PROCEDURE DBMS_ALERT.SIGNAL (name IN VARCHAR2, message IN VARCHAR2);

WAITANY procedure
The WAITANY procedure waits for a signal for any of the alerts in which the session has registered interest.

The specification is:

PROCEDURE DBMS_ALERT.WAITANY

 (name OUT VARCHAR2,

 message OUT VARCHAR2,

 status OUT INTEGER,

 timeout IN NUMBER DEFAULT MAXWAIT);

DMS_DDL
The DBMS_DDL package provides access to some of the SQL DDL statements from within stored

procedures.

ALTER_COMPILE procedure
The ALTER_COMPILE procedure can be used to programmatically force a recompile of a stored object. The

specification is:

PROCEDURE DBMS_DDL.ALTER_COMPILE

 (type VARCHAR2,

 schema VARCHAR2,

 name VARCHAR2);

ANALYZE_OBJECT procedure
A call to ANALYZE_OBJECT lets you programmatically compute statistics for the specified object. The

specification is:

PROCEDURE DBMS_DDL.ANALYZE_OBJECT

 (type VARCHAR2,

 schema VARCHAR2,

 name VARCHAR2,

 method VARCHAR2,

 estimate_rows NUMBER DEFAULT NULL,

 estimate_percent NUMBER DEFAULT NULL);

DBMS JOB

The DBMS_ JOB package provides a way for you to schedule jobs from within the Oracle RDBMS. A job is

a call to a single stored procedure. You can submit a job to run once or on a recurring basis. Once a job has

been submitted, you can check on the status of the job by viewing a data dictionary table. You can also change

the parameters of the job with the CHANGE procedure. When you submit a job, you must provide a string

that describes that job to the DBMS_ JOB package and specify a job execution interval.

BROKEN procedure
The Oracle Server considers a job to be broken if it has tried and failed 16 times to run the job. At this point,

Oracle marks the job as broken and will no longer try to run the job until either (a) you mark the job as fixed

or (b) you force the job to execute with a call to the RUN procedure. Use the BROKEN procedure to mark the

job as fixed and specify the next date on which you want the job to run. The specification is:

PROCEDURE DBMS_JOB.BROKEN

 (job IN BINARY_INTEGER,

 broken IN BOOLEAN,

 next_date IN DATE DEFAULT SYSDATE);

CHANGE procedure
Use the CHANGE procedure to change one or all of the attributes of a job. The specification is:

PROCEDURE DBMS_JOB.CHANGE

 (job IN BINARY_INTEGER,

 what IN VARCHAR2,

 next_date IN DATE,

 interval IN VARCHAR2);

INTERVAL procedure
Use the INTERVAL procedure to change the interval for which a queued job is going to run. The

specification is:

PROCEDURE DBMS_JOB.INTERVAL

 (job IN BINARY_INTEGER,

 interval IN VARCHAR2);

ISUBMIT procedure
The ISUBMIT procedure submits a new job with a specified job number to the queue. The difference between

ISUBMIT and SUBMIT (described later in this section) is that ISUBMIT specifies a job number, whereas

SUBMIT returns a job number generated by the DBMS_JOB package. The specification is:

PROCEDURE DBMS_JOB.ISUBMIT

 (job IN BINARY_INTEGER,

 what IN VARCHAR2,

 next_date in DATE DEFAULT SYSDATE

 interval IN VARCHAR2 DEFAULT 'NULL',

 no_parse in BOOLEAN DEFAULT FALSE);

NEXT_DATE procedure
Use the NEXT_DATE procedure to change when a queued job is going to run. The specification is:

PROCEDURE DBMS_JOB.NEXT_DATE

 (job IN BINARY_INTEGER,

 next_date IN DATE);

REMOVE procedure
Use the REMOVE procedure to remove a job from the queue. If the job has started execution, you cannot

remove it from the queue. The specification is:

PROCEDURE DBMS_JOB.REMOVE (job IN BINARY_INTEGER);

RUN procedure
Use the RUN procedure to force a job to be executed immediately, regardless of the values for next_date and

interval stored in the job queue. The specification is:

PROCEDURE DBMS_JOB.RUN (job IN BINARY_INTEGER);

SUBMIT procedure
The SUBMIT procedure submits jobs to the queue. The specification is:

PROCEDURE DBMS_JOB.SUBMIT

 (job OUT BINARY_INTEGER,

 what IN VARCHAR2,

 next_date IN DATE DEFAULT SYSDATE,

 interval IN VARCHAR2 DEFAULT 'NULL',

 no_parse IN BOOLEAN DEFAULT FALSE);

USER_EXPORT procedure

The USER_EXPORT procedure is used to extract the job string from a job in the queue. The specification is:

PROCEDURE DBMS_JOB.USER_EXPORT

 (job IN BINARY_INTEGER,

 mycall OUT VARCHAR2);

WHAT procedure
Use the WHAT procedure to change what a queued job is going to run. The specification is:

PROCEDURE DBMS_JOB.WHAT

 (job IN BINARY_INTEGER,

 what IN VARCHAR2);

DBMS_LOB (PL/SQL8 Only)
Use the DBMS_LOB package to manipulate LOBs (large objects) from within a PL/SQL program and SQL

statements. With DBMS_LOB you can read and modify BLOBs (binary LOBs), CLOBs (single−byte

character data), and NCLOBs (fixed−width single−byte or multibyte character data), and you can perform

read−only operations on BFILEs (file−based LOBs).

APPEND procedure
Call the APPEND procedure to append the contents of a source LOB to a destination LOB. The specifications

are:

PROCEDURE DBMS_LOB.APPEND

 (dest_lob IN OUT BLOB,

 src_lob IN BLOB);

PROCEDURE DBMS_LOB.APPEND

 (dest_lob IN OUT CLOB CHARACTER SET ANY_CS,

 src_lob IN CLOB CHARACTER SET DEST_LOB%CHARSET);

COMPARE function
Use the compare function to compare two LOBs in their entirety, or compare just parts of two LOBs. The

specifications are:

FUNCTION DBMS_LOB.COMPARE

 (lob_1 IN BLOB,

 lob_2 IN BLOB,

 amount IN INTEGER := 4294967295,

 offset_1 IN INTEGER := 1,

 offset_2 IN INTEGER := 1)

RETURN INTEGER;

FUNCTION DBMS_LOB.COMPARE

 (lob_1 IN CLOB CHARACTER SET ANY_CS,

 lob_2 IN CLOB CHARACTER SET LOB_1%CHARSET,

 amount IN INTEGER := 4294967295,

 offset_1 IN INTEGER := 1,

 offset_2 IN INTEGER := 1)

RETURN INTEGER;

FUNCTION DBMS_LOB.COMPARE

 (file_1 IN BFILE,

 file_2 IN BFILE,

 amount IN INTEGER,

 offset_1 IN INTEGER := 1,

 offset_2 IN INTEGER := 1)

RETURN INTEGER;

COPY procedure
The copy procedure copies all or part of a source LOB to a destination LOB. The specifications are:

PROCEDURE DBMS_LOB.COPY

 (dest_lob IN OUT BLOB,

 src_lob IN BLOB,

 amount IN OUT INTEGER,

 dest_offset IN INTEGER := 1,

 src_offset IN INTEGER := 1);

PROCEDURE DBMS_LOB.COPY

 (dest_lob IN OUT CLOB CHARACTER SET ANY_CS,

 src_lob IN CLOB CHARACTER SET DEST_LOB%CHARSET,

 amount IN OUT INTEGER,

 dest_offset IN INTEGER := 1,

 src_offset IN INTEGER := 1);

ERASE procedure
The erase procedure erases an entire LOB or part of a LOB. The specifications are:

PROCEDURE DBMS_LOB.ERASE

 (lob_loc IN OUT BLOB,

 amount IN OUT INTEGER,

 offset IN INTEGER := 1);

PROCEDURE DBMS_LOB.ERASE

 (lob_loc IN OUT CLOB CHARACTER SET ANY_CS,

 amount IN OUT INTEGER,

 offset IN INTEGER := 1);

FILECLOSE procedure
Call the fileclose procedure to close a BFILE which has previously been opened in your session or PL/SQL

block. The specification is:

PROCEDURE DBMS_LOB.FILECLOSE (file_loc IN OUT BFILE);

FILECLOSEALL procedure
The filecloseall procedure closes all BFILEs which have previously been opened in your session. The

specification is:

PROCEDURE DBMS_LOB.FILECLOSEALL;

FILEEXISTS function
The fileexists function returns 1 if the file you have specified via a BFILE locator exists. The specification is:

FUNCTION DBMS_LOB.FILEEXISTS (file_loc IN BFILE) RETURN INTEGER;

FILEGETNAME procedure
Use the filegetname procedure to translate a BFILE locator into its directory alias and filename components.

The specification is:

 (file_loc IN BFILE,

 dir_alias OUT VARCHAR2,

 filename OUT VARCHAR2);

FILEISOPEN function
The fileisopen function returns 1 if the BFILE is already open. The specification is:

FUNCTION DBMS_LOB.FILEISOPEN (file_loc IN BFILE) RETURN INTEGER;

FILEOPEN procedure
The fileopen procedure opens a BFILE with the specified mode. The specification is:

PROCEDURE DBMS_LOB.FILEOPEN

 (file_loc IN OUT BFILE,

 open_mode IN BINARY_INTEGER := FILE_READONLY);

GETLENGTH function
Use the getlength function to return the length of the specified LOB in bytes or characters, depending on the

type of LOB. The specifications are:

FUNCTION DBMS_LOB.GETLENGTH (lob_loc IN BLOB) RETURN INTEGER;

FUNCTION DBMS_LOB.GETLENGTH(lob_loc IN CLOB CHARACTER SET ANY_CS)

RETURN INTEGER;

FUNCTION DBMS_LOB.GETLENGTH (file_loc IN BFILE) RETURN INTEGER;

INSTR function
The instr function returns the matching location of the nth occurrence of the specified pattern in the LOB. The

specifications are:

FUNCTION DBMS_LOB.INSTR

 (lob_loc IN BLOB,

 pattern IN RAW,

 offset IN INTEGER := 1,

 nth IN INTEGER := 1)

RETURN INTEGER;

FUNCTION DBMS_LOB.INSTR

 (lob_loc IN CLOB CHARACTER SET ANY_CS,

 pattern IN VARCHAR2 CHARACTER SET LOB_LOC%CHARSET,

 offset IN INTEGER := 1,

 nth IN INTEGER := 1)

RETURN INTEGER;

FUNCTION DBMS_LOB.INSTR

 (file_loc IN BFILE,

 pattern IN RAW,

 offset IN INTEGER := 1,

 nth IN INTEGER := 1)

RETURN INTEGER;

READ procedure
PROCEDURE DBMS_LOB.READ

 (lob_loc IN BLOB,

 amount IN OUT BINARY_INTEGER,

 offset IN INTEGER,

 buffer OUT RAW);

PROCEDURE DBMS_LOB.READ

 (lob_loc IN CLOB CHARACTER SET ANY_CS,

 amount IN OUT BINARY_INTEGER,

 offset IN INTEGER,

 buffer OUT VARCHAR2 CHARACTER SET LOB_LOC%CHARSET);

PROCEDURE DBMS_LOB.READ

 (file_loc IN BFILE,

 amount IN OUT BINARY_INTEGER,

 offset IN INTEGER,

 buffer OUT RAW);

SUBSTR function
The substr function returns the specified number of bytes or characters from a LOB. The specifications are:

FUNCTION DBMS_LOB.SUBSTR

 (lob_loc IN BLOB,

 amount IN INTEGER := 32767,

 offset IN INTEGER := 1)

RETURN RAW;

FUNCTION DBMS_LOB.SUBSTR

 (lob_loc IN CLOB CHARACTER SET ANY_CS,

 amount IN INTEGER := 32767,

 offset IN INTEGER := 1)

RETURN VARCHAR2;

FUNCTION DBMS_LOB.SUBSTR

 (file_loc IN BFILE,

 amount IN INTEGER := 32767,

 offset IN INTEGER := 1)

RETURN RAW;

TRIM procedure
Use the trim procedure to trim the LOB value to the length you specify. The specifications are:

PROCEDURE DBMS_LOB.TRIM

 (lob_loc IN OUT BLOB,

 newlen IN INTEGER);

PROCEDURE DBMS_LOB.TRIM

 (lob_loc IN OUT CLOB CHARACTER SET ANY_CS,

 newlen IN INTEGER);

WRITE procedure
Call the write procedure to write a specified number of bytes or characters from a buffer variable into a LOB

at a specified position. The specifications are:

PROCEDURE DBMS_LOB.WRITE

 (lob_loc IN OUT BLOB,

 amount IN OUT BINARY_INTEGER,

 offset IN INTEGER,

 buffer IN RAW);

PROCEDURE DBMS_LOB.WRITE

 (lob_loc IN OUT CLOB CHARACTER SET ANY_CS,

 amount IN OUT BINARY_INTEGER,

 offset IN INTEGER,

 buffer IN VARCHAR2 CHARACTER SET LOB_LOC%CHARSET);

DBMS LOCK

The DBMS_LOCK package provides you with access to the Oracle Lock Management (OLM) services. With

OLM, you can request a lock of a particular type, assign it a name that can then be used as a handle to this

lock, modify the lock, and even release the lock. A lock you create with the DBMS_LOCK package has all

the functionality of a lock generated by the Oracle RDBMS, including deadlock detection and view access

through SQL*DBA and the relevant virtual tables.

ALLOCATE_UNIQUE procedure
The ALLOCATE_UNIQUE procedure allocates a unique lock handle for the specified lock name. The

specification is:

PROCEDURE DBMS_LOCK.ALLOCATE_UNIQUE

 (lockname IN VARCHAR2,

 lockhandle OUT VARCHAR2,

 expiration_secs IN INTEGER DEFAULT 864000);

CONVERT function
The CONVERT function converts a lock from one type or mode to another. The specifications are:

FUNCTION DBMS_LOCK.CONVERT

 (id IN INTEGER,

 lockmode IN INTEGER,

 timeout IN NUMBER DEFAULT MAXWAIT)

RETURN INTEGER;

FUNCTION DBMS_LOCK.CONVERT

 (lockhandle IN VARCHAR2,

 lockmode IN INTEGER,

 timeout IN NUMBER DEFAULT MAXWAIT)

RETURN INTEGER;

RELEASE function
The RELEASE function releases the specified lock. This specifications are:

FUNCTION DBMS_LOCK.RELEASE (id IN INTEGER) RETURN INTEGER;

FUNCTION DBMS_LOCK.RELEASE (lockhandle IN VARCHAR2) RETURN INTEGER;

REQUEST function
The REQUEST function requests a lock of the specified mode. The specifications are:

FUNCTION DBMS_LOCK.REQUEST

 (id IN INTEGER,

 lockmode IN INTEGER DEFAULT X_MODE,

 timeout IN NUMBER DEFAULT MAXWAIT,

 release_on_commit IN BOOLEAN DEFAULT FALSE)

RETURN INTEGER;

FUNCTION DBMS_LOCK.REQUEST

 (lockhandle IN VARCHAR2,

 lockmode IN INTEGER DEFAULT X_MODE,

 timeout IN NUMBER DEFAULT MAXWAIT,

 release_on_commit IN BOOLEAN DEFAULT FALSE)

RETURN integer;

The function returns the status of the attempt to obtain the lock; the codes are identical to those shown above

for the convert function.

DBMS_OUTPUT

Of all the packages in this appendix, the DBMS_OUTPUT package is the one you will find yourself using

most frequently. This package allows you to display information to your session's output device in a buffer as

your PL/SQL program executes. As such, it serves as just about the only easily accessible means of debugging

your PL/SQL Version 2 programs. DBMS_OUTPUT is also the package you will use to generate reports from

PL/SQL scripts run in SQL*Plus.

ENABLE procedure
The ENABLE procedure enables calls to the other DBMS_OUTPUT modules. If you do not first call

ENABLE, then any other calls to the package modules are ignored. The specification is:

PROCEDURE DBMS_OUTPUT.ENABLE (buffer_size IN INTEGER DEFAULT 2000);

GET_LINE procedure
The GET_LINE procedure retrieves one line of information from the buffer. The specification is:

PROCEDURE DBMS_OUTPUT.GET_LINE

 (line OUT VARCHAR2,

 status OUT INTEGER);

GET_LINES procedure
The GET_LINES procedure retrieves multiple lines from the buffer with one call. It reads the buffer into a

PL/SQL string table. The specification is:

PROCEDURE DBMS_OUTPUT.GET_LINES

 (lines OUT CHARARR,

 numlines IN OUT INTEGER);

NEW_LINE procedure
The NEW_LINE procedure inserts an end−of−line marker in the buffer. Use NEW_LINE after one or more

calls to PUT in order to terminate those entries in the buffer with a newline marker. The specification is:

PROCEDURE DBMS_OUTPUT.NEW_LINE;

PUT procedure
The PUT procedure puts information into the buffer, but does not append a newline marker into the buffer.

Use PUT if you want to place information in the buffer (usually with more than one call to PUT), but not also

automatically issue a newline marker. The specifications are:

PROCEDURE DBMS_OUTPUT.PUT (A VARCHAR2);

PROCEDURE DBMS_OUTPUT.PUT (A NUMBER);

PROCEDURE DBMS_OUTPUT.PUT (A DATE);

PUT_LINE procedure
The PUT_LINE procedure puts information into the buffer and then appends a newline marker into the buffer.

The specifications are:

PROCEDURE DBMS_OUTPUT.PUT_LINE (A VARCHAR2);

PROCEDURE DBMS_OUTPUT.PUT_LINE (A NUMBER);

PROCEDURE DBMS_OUTPUT.PUT_LINE (A DATE);

DBMS PIPE

The DBMS_PIPE package provides a way for sessions in the same database instance to communicate with

each other. One of the most useful aspects of Oracle pipes is that pipe communication is asynchronous: you

need not COMMIT a transaction in order to initiate pipe−related activity, as is necessary with the

DBMS_ALERT package. You can send a message through and receive a message from a pipe at any time.

Indeed, more than one session can read or write to the same pipe.

CREATE_PIPE function
With PL/SQL Release 2.2 only, the CREATE_PIPE function allows you to explicitly request the creation of a

pipe, either public or private. The specification is:

FUNCTION DBMS_PIPE.CREATE_PIPE

 (pipename IN VARCHAR2,

 maxpipesize IN INTEGER DEFAULT 8192,

 private IN BOOLEAN DEFAULT TRUE)

RETURN INTEGER;

The function returns a numeric status code. If it returns 0, then the pipe was created successfully.

NEXT_ITEM_TYPE function
The NEXT_ITEM_TYPE function returns the type of the next item in the local message buffer. Data is put in

the message buffer with both the PACK_MESSAGE and the RECEIVE_MESSAGE procedures. Use

NEXT_ITEM_TYPE to decide which kind of variable you should use to receive the data from the buffer with

the overloaded UNPACK_MESSAGE module. The specification is:

FUNCTION DBMS_PIPE.NEXT_ITEM_TYPE RETURN INTEGER;

The PACK_MESSAGE procedure
The PACK_MESSAGE procedure packs an item into the message buffer for your session. A pipe message

item may have a datatype of VARCHAR2, NUMBER, or DATE. The specifications are:

PROCEDURE DBMS_PIPE.PACK_MESSAGE (item IN VARCHAR2);

PROCEDURE DBMS_PIPE.PACK_MESSAGE (item IN NUMBER);

PROCEDURE DBMS_PIPE.PACK_MESSAGE (item IN DATE);

PURGE procedure
The PURGE procedure empties the contents of the named pipe. The specification is:

PROCEDURE DBMS_PIPE.PURGE (pipename IN VARCHAR2);

RECEIVE_MESSAGE function
The RECEIVE_MESSAGE function receives a message from the named pipe and copies the contents of that

message to the local message buffer. Once you receive the message into the buffer, you can use the

UNPACK_MESSAGE procedure to extract the items from the buffer into local variables. The specification is:

FUNCTION DBMS_PIPE.RECEIVE_MESSAGE

 (pipename IN VARCHAR2, timeout IN INTEGER DEFAULT MAXWAIT)

RETURN INTEGER;

REMOVE_PIPE function
The REMOVE_PIPE function removes a pipe from shared memory. This function must be called to remove a

pipe created explicitly with CREATE_PIPE. If your pipe is created implicitly, then it will be removed with a

call to PURGE or whenever the pipe is emptied. The specification is:

FUNCTION DBMS_PIPE.REMOVE_PIPE (pipename IN VARCHAR2) RETURN INTEGER;

RESET_BUFFER procedure
The RESET_BUFFER procedure clears the buffer so that both PACK_MESSAGE and

UNPACK_MESSAGE will work from the first item. The specification is:

PROCEDURE DBMS_PIPE.RESET_BUFFER;

SEND_MESSAGE function
The SEND_MESSAGE function sends the contents of the local message buffer to the named pipe. The

specification is:

FUNCTION DBMS_PIPE.SEND_MESSAGE

 (pipename IN VARCHAR2,

 timeout IN INTEGER DEFAULT MAXWAIT,

 maxpipesize IN INTEGER DEFAULT 8192)

RETURN INTEGER;

UNIQUE_SESSION_NAME function
The UNIQUE_SESSION_NAME function returns a name that is unique among the sessions currently

connected to the database. You can use this function to obtain a name for a pipe that you know will not be in

use by any other sessions. The specification is:

FUNCTION DBMS_PIPE.UNIQUE_SESSION_NAME RETURN VARCHAR2;

PACK_MESSAGE procedure
The UNPACK_MESSAGE procedure unpacks the next item from the local message buffer and deposits it

into the specified local variable. The specification is:

PROCEDURE DBMS_PIPE.UNPACK_MESSAGE (item OUT VARCHAR2);

PROCEDURE DBMS_PIPE.UNPACK_MESSAGE (item OUT NUMBER);

PROCEDURE DBMS_PIPE.UNPACK_MESSAGE (item OUT DATE);

DBMS_ROWID (PL/SQL8 Only)
Use the DBMS_ROWID package to work with ROWIDs from within PL/SQL programs and SQL statements.

Remember that as of Oracle8, there are two types of ROWIDs: extended and restricted. Restricted ROWIDs

are the ROWIDs available with Oracle Version 7 and earlier. Extended ROWIDs are used in Oracle8.

ROWID_CREATE function
Call the create function to create a ROWID (either restricted or extended as you request) based on the

individual ROWID component values you specify. This should be used for test purposes only. The

specification is:

FUNCTION DBMS_ROWID.ROWID_CREATE

 (rowid_type IN NUMBER,

 object_number IN NUMBER,

 relative_fno IN NUMBER,

 block_number IN NUMBER,

 row_number IN NUMBER)

RETURN ROWID;

The ROWID_INFO procedure
The info procedure returns information about the specified ROWID. This procedure essentially "parses" the

ROWID. The specification is:

PROCEDURE DBMS_ROWID.ROWID_INFO

 (rowid_in IN ROWID,

 rowid_type OUT NUMBER,

 object_number OUT NUMBER,

 relative_fno OUT NUMBER,

 block_number OUT NUMBER,

 row_number OUT NUMBER);

ROWID_TYPE function
The type function determines if the ROWID is restricted or extended. It returns if the ROWID is restricted,

and 1 if the ROWID is extended. The specification is:

FUNCTION DBMS_ROWID.ROWID_TYPE (row_id IN ROWID) RETURN NUMBER;

ROWID_OBJECT function
Use the object function to return the data object number for an extended ROWID. The object function returns

if the specified ROWID is restricted. The specification is:

FUNCTION DBMS_ROWID.ROWID_OBJECT (row_id IN ROWID) RETURN NUMBER;

ROWID_RELATIVE_FNO function
The relative_fno function returns the relative file number (relative to the tablespace) of the ROWID. The

specification is:

FUNCTION DBMS_ROWID.ROWID_RELATIVE_FNO (row_id IN ROWID) RETURN NUMBER;

ROWID_BLOCK_NUMBER function
Use the block_number function to return the database block number of the ROWID. The specification is:

FUNCTION DBMS_ROWID.ROWID_BLOCK_NUMBER (row_id IN ROWID) RETURN NUMBER;

ROWID_ROW_NUMBER function
The row_number function returns the row number of the ROWID. The specification is:

FUNCTION DBMS_ROWID.ROWID_ROW_NUMBER (row_id IN ROWID) RETURN NUMBER;

ROWID_TO_ABSOLUTE_FNO function
Call the to_absolute_fno function to return the absolute file number (for a row in a given schema and table)

from the ROWID. The specification is:

FUNCTION DBMS_ROWID.ROWID_TO_ABSOLUTE_FNO

 (row_id IN ROWID,

 schema_name IN VARCHAR2,

 object_name IN VARCHAR2)

RETURN NUMBER;

ROWID_TO_EXTENDED function
The to_extended function converts a restricted ROWID to an extended ROWID. The specification is:

FUNCTION DBMS_ROWID.ROWID_TO_EXTENDED

 (old_rowid IN ROWID,

 schema_name IN VARCHAR2,

 object_name IN VARCHAR2,

 conversion_type IN INTEGER)

RETURN ROWID;

ROWID_TO_RESTRICTED function
The to_restricted function converts an extended ROWID to a restricted ROWID. The specification is:

FUNCTION DBMS_ROWID.ROWID_TO_RESTRICTED

 (old_rowid IN ROWID,

 conversion_type IN INTEGER)

RETURN ROWID;

ROWID_VERIFY function
Use the verify function to determine whether a restricted ROWID can be converted to an extended format.

The verify function returns if the ROWID provided can be converted and 1 otherwise. The specification is:

FUNCTION DBMS_ROWID.ROWID_VERIFY

 (rowid_in IN ROWID,

 (param VARCHAR2,

 value VARCHAR2);

DBMS_SESSION

The DBMS_SESSION package provides you with a programmatic interface to several SQL ALTER

SESSION commands and other session−level commands.

CLOSE_DATABASE_LINK procedure
The CLOSE_DATABASE_LINK procedure closes the specified database link. The specification is:

PROCEDURE DBMS_SESSION.CLOSE_DATABASE_LINK (dblink VARCHAR2);

IS_ROLE_ENABLED function
The IS_ROLE_ENABLED function determines whether the specified role is enabled for this session. The

specification is:

FUNCTION DBMS_SESSION.IS_ROLE.ENABLED (rolename VARCHAR2) RETURN BOOLEAN;

RESET_PACKAGE procedure
The RESET_PACKAGE procedure de−instantiates all packages in the current session. It comes in very handy

for releasing all the memory associated with data structures and modules you may be using in your tests.

However, this procedure should be used with extreme caution, since it literally wipes the slate clean for all

packages in the session. The specification is:

PROCEDURE DBMS_SESSION.RESET_PACKAGE;

SET_NLS_LABEL procedure
The SET_NLS_LABEL procedure changes the default label format for your session in Trusted Oracle. The

specification is:

PROCEDURE DBMS_SESSION.SET_NLS_LABEL (fmt VARCHAR2);

SET_NLS procedure
The SET_NLS procedure provides you with a programmatic interface to change the value of a specified

National Language Support parameter. The specification is:

PROCEDURE DBMS_SESSION.SET_NLS

SET_ROLE procedure
The SET_ROLE procedure enables or disables the role for the current session. The specification is:

PROCEDURE DBMS_SESSION.SET_ROLE (role_cmd VARCHAR2);

SET_SQL_TRACE procedure
Use SET_SQL_TRACE to turn the trace facility on and off within your program. The specification is:

PROCEDURE DBMS_SESSION.SET_SQL_TRACE (sql_trace BOOLEAN);

UNIQUE_SESSION_ID function
The UNIQUE_SESSION_ID function returns a name that is unique among the sessions currently connected to

the database. The specification is:

FUNCTION DBMS_SESSION.UNIQUE_SESSION_ID RETURN VARCHAR2;

DBMS_SNAPSHOT

The DBMS_SNAPSHOT package provides a programmatic interface through which you can manage

snapshots and purge snapshot logs. For detailed information about snapshots (read−only copies of tables), see

Chapter 16 in the Oracle7 Server Administrator Guide.

DROP_SNAPSHOT procedure
This procedures drops the specified snapshot. The specification is:

PROCEDURE DBMS_SNAPSHOT.DROP_SNAPSHOT

 (mowner VARCHAR2,

 master VARCHAR2,

 snapshot DATE);

GET_LOG_AGE procedure
This procedures gets the oldest date entry in the log. The specification is:

PROCEDURE DBMS_SNAPSHOT.GET_LOG_AGE

 (oldest IN OUT date,

 mow VARCHAR2,

 mas VARCHAR2);

REFRESH procedure
This procedure causes a manual refresh of the snapshot. The procedure is overloaded so that you can specify

an optional refresh option. The specifications are:

PROCEDURE DBMS_SNAPSHOT.REFRESH (snapshot VARCHAR2);

PROCEDURE DBMS_SNAPSHOT.REFRESH

 (snapshot VARCHAR2,

 op VARCHAR2);

REFRESH_ALL procedure
This procedure causes a refresh of all snapshots waiting to be refreshed automatically. The specification is:

PROCEDURE DBMS_SNAPSHOT.REFRESH_ALL;

SET_UP procedure
This procedure prepares the specified master site to refresh a snapshot. The specification is:

PROCEDURE DBMS_SNAPSHOT.SET_UP

 (mowner VARCHAR2,

 master VARCHAR2,

 log IN OUT VARCHAR2,

 snapshot IN OUT date,

 snaptime IN OUT date);

DBMS SQL

The DBMS_SQL package offers access to dynamic SQL from within PL/SQL. "Dynamic SQL" means SQL

statements are not prewritten into your programs; instead, they are constructed at run time as character strings

and then passed to the SQL engine for execution.

The BIND_ARRAY procedure
With PL/SQL8 you can perform bulk selects, inserts, updates and deletes to improve the performance of your

application. You accomplish these by associating one or more index−by tables with columns in your cursor.

The BIND_ARRAY procedure performs this step for you with this interface:

PROCEDURE DBMS_SQL.BIND_ARRAY (c IN INTEGER,

 name IN VARCHAR2,

 <table_variable> IN <datatype>,

 [,index1 IN INTEGER,

 ,index2 IN INTEGER)]);

The <table_variable> <datatype> pairing may be any of the following:

<number_table> DBMS_SQL.NUMBER_TABLE

<varchar2_table> DBMS_SQL.VARCHAR2_TABLE

<date_table> DBMS_SQL.DATE_TABLE

<blob_table> DBMS_SQL.BLOB_TABLE

<clob_table> DBMS_SQL.CLOB_TABLE

<bfile_table> DBMS_SQL.BFILE_TABLE

The BIND_VARIABLE procedure
The BIND_VARIABLE procedure lets you bind a specific value to a host variable which was placed in the

SQL statement as a placeholder. Whenever you include a reference to a bind or host variable in the SQL

statement that you pass to the PARSE procedure, you must issue a call to BIND_VARIABLE in order to bind

or attach a value to that variable. The overloaded specification for this procedure supports multiple datatypes,

as follows:

PROCEDURE DBMS_SQL.BIND_VARIABLE

 (c IN INTEGER,

 name IN VARCHAR2,

 value IN <datatype>);

The <datatype> may be any of the following:

BFILE

BLOB

CLOB CHARACTER SET ANY_CS

DATE

MLSLABEL /* Trusted Oracle only */

NUMBER

VARCHAR2 CHARACTER SET ANY_CS

The dbms_sql package also offers more specific variants of bind_variable for less common datatypes:

PROCEDURE DBMS_SQL.BIND_VARIABLE

 (c IN INTEGER,

 name IN VARCHAR2,

 value IN VARCHAR2 CHARACTER SET ANY_CS,

 [,out_value_size IN INTEGER]);

PROCEDURE DBMS_SQL.BIND_VARIABLE_CHAR

 (c IN INTEGER,

 name IN VARCHAR2,

 value IN CHAR CHARACTER SET ANY_CS,

 [,out_value_size IN INTEGER]);

PROCEDURE DBMS_SQL.BIND_VARIABLE_RAW

 (c IN INTEGER,

 name IN VARCHAR2,

 value IN RAW,

 [,out_value_size IN INTEGER]);

PROCEDURE DBMS_SQL.BIND_VARIABLE_ROWID

 (c IN INTEGER,

 name IN VARCHAR2,

 value IN ROWID;

CLOSE_CURSOR procedure
The CLOSE_CURSOR procedure closes the specified cursor and sets the cursor handle to NULL. It releases

all memory associated with the cursor. The specification for the procedure is:

PROCEDURE DBMS_SQL.CLOSE_CURSOR (c IN OUT INTEGER);

COLUMN_VALUE procedure
The COLUMN_VALUE procedure retrieves a value from the cursor into a local variable. Use this procedure

when the SQL statement is a query and you are fetching rows with EXECUTE_AND_FETCH or

FETCH_ROWS. You call COLUMN_VALUE after a row has been fetched to transfer the value from the

SELECT list of the cursor into a local variable. For each call to COLUMN_VALUE, you should have made a

call to DEFINE_COLUMN in order to define that column in the cursor.

The overloaded specification is:

PROCEDURE DBMS_SQL.COLUMN_VALUE

 (c IN INTEGER,

 position IN INTEGER,

 value OUT DATE,

 [, column_error OUT NUMBER]

 [, actual_length OUT INTEGER]);

PROCEDURE DBMS_SQL.COLUMN_VALUE

 (c IN INTEGER,

 position IN INTEGER,

 value OUT NUMBER,

 [, column_error OUT NUMBER]

 [, actual_length OUT INTEGER]);

PROCEDURE DBMS_SQL.COLUMN_VALUE

 (c IN INTEGER,

 position IN INTEGER,

 value OUT VARCHAR2,

 [, column_error OUT NUMBER]

 [, actual_length OUT INTEGER]);

The DBMS_SQL package also offers more specific variants of COLUMN_VALUE for less common

datatypes:

PROCEDURE DBMS_SQL.COLUMN_VALUE

 (c IN INTEGER,

 position IN INTEGER,

 value OUT MLSLABEL,

 [, column_error OUT NUMBER]

 [, actual_length OUT INTEGER]);

PROCEDURE DBMS_SQL.COLUMN_VALUE

 (c IN INTEGER,

 position IN INTEGER,

 value OUT CHAR,

 [, column_error OUT NUMBER]

 [, actual_length OUT INTEGER]);

PROCEDURE DBMS_SQL.COLUMN_VALUE

(c IN INTEGER,

 position IN INTEGER,

 value OUT RAW,

 [, column_error OUT NUMBER]

 [, actual_length OUT INTEGER]);

PROCEDURE DBMS_SQL.COLUMN_VALUE

 (c IN INTEGER,

 position IN INTEGER,

 value OUT ROWID,

 [, column_error OUT NUMBER]

 [, actual_length OUT INTEGER]);

DEFINE_COLUMN procedure
When you call DBMS_SQL.PARSE to process a SELECT statement, you want to pass values from the

database into local variables. To do this you must associate the columns or expressions in the SELECT list

with those local variables. You do this with the DEFINE_COLUMN procedure, whose overloaded

specification is:

PROCEDURE DBMS_SQL.DEFINE_COLUMN

 (c IN INTEGER,

 position IN INTEGER,

 column IN VARCHAR2,

 column_size IN INTEGER);

EXECUTE function
The EXECUTE function executes the SQL statement associated with the specified cursor. It returns the

number of rows processed by the SQL statement if that statement is an UPDATE, INSERT, or DELETE. If

the SQL statement is not an UPDATE, INSERT, or DELETE, ignore the value returned by EXECUTE. If the

SQL statement is a query, you can now call the FETCH_ROWS function to fetch rows which are retrieved by

that query. The specification is:

FUNCTION DBMS_SQL.EXECUTE (c IN INTEGER) RETURN INTEGER;

EXECUTE_AND_FETCH function
The EXECUTE_AND_FETCH function executes the SELECT statement associated with the specified cursor

and immediately fetches the rows associated with the query. The specification is:

FUNCTION DBMS_SQL.EXECUTE_AND_FETCH

 (c IN INTEGER,

 exact_match IN BOOLEAN DEFAULT FALSE)

RETURN INTEGER;

FETCH_ROWS function
The FETCH_ROW function corresponds to the FETCH statement for regular PL/SQL cursors. It fetches the

next row from the cursor. The specification is:

FUNCTION DBMS_SQL.FETCH_ROWS (c IN INTEGER) RETURN INTEGER;

The IS_OPEN function
The IS_OPEN function returns TRUE if the specified cursor is already open, FALSE otherwise. This function

corresponds to the %ISOPEN attribute for regular PL/SQL cursors. The specification is:

FUNCTION DBMS_SQL.IS_OPEN (c IN INTEGER) RETURN BOOLEAN;

LAST_ERROR_POSITION function
The LAST_ERROR_POSITION function returns the byte offset in the SQL statement where the ERROR

occurred. Call this function immediately after a call to EXECUTE or EXECUTE_AND_FETCH in order to

obtain meaningful results. The specification is:

FUNCTION DBMS_SQL.LAST_ERROR_POSTITION RETURN INTEGER;

LAST_ROW_COUNT function
The LAST_ROW_COUNT function returns the total number of rows fetched at that point. The specification

is:

FUNCTION DBMS_SQL.LAST_ROW_COUNT RETURN INTEGER;

LAST_ROW_ID function
The LAST_ROW_ID function returns the rowid of the row fetched most recently. The specification is:

FUNCTION DBMS_SQL.LAST_ROW_ID RETURN ROWID;

LAST_SQL_FUNCTION_CODE function
The LAST_SQL_FUNCTION_CODE function returns the SQL function code for the SQL statement. The

specification is:

FUNCTION DBMS_SQL.LAST_SQL_FUNCTION_CODE RETURN INTEGER;

OPEN_CURSOR function
Use this function to open a cursor, which means that the Oracle Server will set aside memory for a cursor data

area and return a pointer to that area. The specification is:

FUNCTION DBMS_SQL.OPEN_CURSOR RETURN INTEGER;

PARSE procedure
The PARSE procedure immediately parses the statement specified. The specification for this procedure is:

PROCEDURE DBMS_SQL.PARSE

 (cursor_handle IN INTEGER,

 SQL_statement IN VARCHAR2,

 language_flag IN INTEGER);

PL/SQL8 offers a second, overloaded version of DBMS_SQL.PARSE, which comes in handy when you have

very large SQL statements. If your SQL statement exceeds the largest possible contiguous allocation on your

system (and it is machine−dependent) or 32K bytes (the maximum size for VARCHAR2), use this version of

the PARSE procedure:

PROCEDURE DBMS_SQL.PARSE

 (cursor_handle IN INTEGER,

 SQL_statement IN DBMS_SQL.VARCHAR2S,

 lb IN INTEGER,

 ub IN INTEGER,

 lfflg IN BOOLEAN,

 language_flag IN INTEGER);

DBMS_TRANSACTION

The DBMS_TRANSACTION package provides a programmatic interface to a number of the SQL transaction

statements. The majority of these procedures (advise_commit through rollback_force) have SQL equivalents

that you can invoke directly from within PL/SQL. Thus, many PL/SQL programmers choose to use the SQL

equivalents rather than these procedures. However, the last five procedures (begin_discrete_transaction

through step_id) have no equivalents and nicely abstract the PL/SQL programmer or database administrator

from the internals of what is being accomplished.

ADVISE_COMMIT procedure
The ADVISE_COMMIT procedure specifies that "commit" in−doubt transaction advice is sent to remote

databases during distributed transactions.

The advice generated by this procedure appears on the remote database in the ADVICE column of the

DBA_2PC_PENDING data dictionary view if the distributed transaction becomes in−doubt (i.e., a network or

machine failure occurs during the commit). The remote database administrator can then review the

DBA_2PC_PENDING information and manually commit or roll back in−doubt transactions using the

FORCE clause of the COMMIT or ROLLBACK commands. Each call to an ADVISE procedure remains in

effect for the duration of that connection or until a different ADVISE procedure call is made. This allows you

to send different advice to various remote databases.

This procedure is equivalent to the SQL command, ALTER SESSION ADVISE COMMIT. The specification

is:

PROCEDURE DBMS_TRANSACTION.ADVISE_COMMIT;

ADVISE_NOTHING procedure
The ADVISE_NOTHING procedure specifies that no in−doubt transaction advice is sent to remote databases

during distributed transactions. Advice is handled as described for ADVISE_COMMIT. This procedure is

equivalent to the SQL command, ALTER SESSION ADVISE NOTHING. The specification is:

PROCEDURE DBMS_TRANSACTION.ADVISE_NOTHING;

ADVISE_ROLLBACK procedure
The ADVISE_ROLLBACK procedure specifies that "rollback" in−doubt transaction advice is sent to remote

databases during distributed transactions. Advice is handled as described for ADVISE_COMMIT. This

procedure is equivalent to the SQL command, ALTER SESSION ADVISE ROLLBACK. The specification

is:

PROCEDURE DBMS_TRANSACTION.ADVISE_ROLLBACK;

COMMIT procedure
The COMMIT procedure ends the current transaction and makes permanent all pending changes. It also erases

savepoints and releases all locks. It is provided primarily for completeness. It is equivalent to the COMMIT

command, which is already implemented as part of PL/SQL. I recommend using the SQL command rather

than the procedure. The specification is:

PROCEDURE DBMS_TRANSACTION.COMMIT;

COMMIT_COMMENT procedure
The COMMIT_COMMENT procedure performs a commit and sends a "commit" in−doubt transaction

comment to remote databases during distributed transactions. This comment appears on the remote database

in the TRAN_COMMENT column of the DBA_2PC_PENDING data dictionary view if the distributed

transaction becomes in−doubt (i.e., a network or machine failure occurs during the commit). The remote

database administrator can then review the DBA_2PC_PENDING information and manually commit or roll

back in−doubt transactions using the FORCE clause of the COMMIT or ROLLBACK commands. This

procedure is equivalent to the SQL command, COMMIT COMMENT. The specification is:

PROCEDURE DBMS_TRANSACTION.COMMIT_COMMENT (cmnt VARCHAR2);

COMMIT_FORCE procedure
The COMMIT_FORCE procedure manually commits local in−doubt, distributed transactions. Any decisions

to force in−doubt transactions should be made after consulting with the database administrator(s) at the

remote database location(s). If the decision is made to locally force any transactions, the database

administrator should either commit or rollback such transactions as was done by nodes that successfully

resolved the transactions. Otherwise, the administrator should query the DBA_2PC_PENDING views

ADVICE and TRAN_COMMENT columns for further insight.[2] This procedure is equivalent to the SQL

command, COMMIT FORCE. The specification is:

PROCEDURE DBMS_TRANSACTION.COMMIT_FORCE

 (xid VARCHAR2,

 scn VARCHAR2 DEFAULT NULL);

READ_ONLY procedure
The READ_ONLY procedure establishes the current transaction as a read−consistent transaction (i.e.,

repeatable reads). Once a transaction is designated as read−only, all queries within that transaction can only

see changes committed prior to that transactions start. Thus, read−only transactions let you issue two or more

queries against tables that may be undergoing concurrent inserts or updates, and yet return results consistent

as of the transaction's start. This procedure is equivalent to the SQL command, SET TRANSACTION READ

ONLY. The specification is:

 PROCEDURE DBMS_TRANSACTION.READ_ONLY;

READ_WRITE procedure
The READ_WRITE procedure establishes the current transaction as a read−write transaction. This is the

default transaction mode. This procedure is equivalent to the SQL command, SET TRANSACTION READ

WRITE. The specification is:

PROCEDURE DBMS_TRANSACTION.READ−WRITE;

ROLLBACK procedure
The ROLLBACK procedure ends the current transaction and undoes all pending changes. It also erases

savepoints and releases all locks. It is provided primarily for completeness. It is equivalent to the

ROLLBACK command, which is already implemented as part of PL/SQL. I recommend using the SQL

command rather than the procedure. The specification is:

PROCEDURE DBMS_TRANSACTION.ROLLBACK;

ROLLBACK_FORCE procedure
The ROLLBACK_FORCE procedure manually rolls back local in−doubt, distributed transactions. The

parameter identifies the transaction's local or global transaction ID. To find these transaction IDs, query the

data dictionary view DBA_2PC_PENDING. Any decisions to force in−doubt transactions should be made

after consulting with the database administrator(s) at the remote database location(s), as described for

COMMIT_FORCE. This procedure is equivalent to the SQL command, ROLLBACK FORCE. The

specification is:

PROCEDURE DBMS_TRANSACTION.ROLLBACK_FORCE (xid VARCHAR2);

ROLLBACK_SAVEPOINT procedure
The ROLLBACK_SAVEPOINT procedure rolls back the current transaction to a previously declared

savepoint. It is provided primarily for completeness. It is equivalent to the ROLLBACK SAVEPOINT

command, which is already implemented as part of PL/SQL. I recommend using the SQL command rather

than the procedure. The specification is:

PROCEDURE DBMS_TRANSACTION.ROLLBACK_SAVEPOINT;

SAVEPOINT procedure
The SAVEPOINT procedure identifies a logical point within a transaction to which you can later roll back. It

is provided primarily for completeness. It is equivalent to the SAVEPOINT command, which is already

implemented as part of PL/SQL. I recommend using the SQL command rather than the procedure. The

specification is:

PROCEDURE DBMS_TRANSACTION.SAVEPOINT;

USE_ROLLBACK_SEGMENT procedure
The USE_ROLLBACK_SEGMENT procedure assigns the current transaction to the specified rollback

segment. This option also establishes the transaction as a read−write transaction. The rollback segment

specified must be online. You cannot use both the READ_ONLY and USE_ROLLBACK_SEGMENT

procedures within the same transaction. Read−only transactions do not generate rollback information and thus

cannot be assigned rollback segments. This procedure is equivalent to the SQL command, SET

TRANSACTION USE ROLLBACK SEGMENT. The specification is:

PROCEDURE DBMS_TRANSACTION.USE_ROLLBACK_SEGMENT (rb_name VARCHAR2);

BEGIN_DISCRETE_TRANSACTION procedure
The BEGIN_DISCRETE_TRANSACTION procedure streamlines transaction processing so short

transactions can execute more rapidly. During discrete transactions, normal redo information is generated

although it is stored in a separate location in memory. When the discrete transaction commits, the redo

information is written to the redo log file and data block changes are applied directly. As such, there is no

need for undo information in rollback segments. The block is then written to the database file in the usual

manner. The call to this procedure is effective only until the transaction is committed or rolled back; the next

transaction is processed as a standard transaction. Any PL/SQL using this procedure must be coded to ensure

that the transaction is attempted again in the event of a discrete transaction failure.[3] The specification is:

PROCEDURE DBMS_TRANSACTION.BEGIN_DISCRETE_TRANSACTION;

PURGE_MIXED procedure
The PURGE_MIXED procedure deletes information about a given in−doubt, distributed transaction that has

had mixed outcomes due to a transaction resolution mismatch. This occurs when an in−doubt, distributed

transaction is forced to commit or roll back on one node and other nodes do the opposite. Oracle cannot

automatically resolve such inconsistencies, but it does flag entries in the DBA_2PC_PENDING view by

setting the MIXED column to yes. When the database administrator is sure that any inconsistencies for a

transaction have been resolved, he or she can call the PURGE_MIXED procedure.[4] The specification is:

PROCEDURE DBMS_TRANSACTION.PURGE_MIXED (xid VARCHAR2);

PURGE_LOST_DB procedure
The PURGE_LOST_DB procedure deletes information about a given in−doubt, distributed transaction that

has had mixed outcomes due to a lost database. This occurs when an in−doubt, distributed transaction is able

to commit or roll back on one node and other nodes have either destroyed or recreated their databases. Oracle

cannot automatically resolve such inconsistencies, as described in PURGE_MIXED. The specification is:

PROCEDURE DBMS_TRANSACTION.PURGE_LOST_DB (xid VARCHAR2);

LOCAL_TRANSACTION_ID function
The LOCAL_TRANSACTION_ID function returns the unique identifier for the current transaction. The

function returns NULL if there is no current transaction. The specification is:

 FUNCTION DBMS_TRANSACTION.LOCAL_TRANSACTION_ID

 (create_transaction BOOLEAN := false)

RETURN VARCHAR2;

STEP_ID function
The STEP_ID function returns the unique positive integer that orders the DML operations of the current

transaction. The specification is:

 FUNCTION DBMS_TRANSACTION.STEP_ID RETURN VARCHAR2;

DBMS_UTILITY

The DBMS_UTILITY package includes several utility modules you might find useful when managing objects

in the database.

ANALYZE_SCHEMA procedure
This procedure analyzes all the tables, clusters, and indexes in the specified schema. The specification is:

PROCEDURE DBMS_UTILITY.ANALYZE_SCHEMA

 (schema VARCHAR2,

 method VARCHAR2,

 estimate_rows NUMBER DEFAULT NULL,

 estimate_percent NUMBER DEFAULT NULL);

COMMA_TO_TABLE procedure
The COMMA_TO_TABLE procedure parses a comma−delimited list and places each name into a PL/SQL

table. The specification is:

PROCEDURE DBMS_UTILITY.COMMA_TO_TABLE

 (list IN VARCHAR2,

 tablen OUT BINARY_INTEGER,

 tab OUT uncl_array);

COMPILE_SCHEMA procedure
This procedure compiles all procedures, functions, and packages in the specified schema. The specification is:

PROCEDURE DBMS_UTILITY.COMPILE_SCHEMA (schema VARCHAR2);

FORMAT_CALL_STACK function
This function formats and returns the current call stack. You can use this function to access the call stack in

your program. The specification is:

FUNCTION DBMS_UTILITY.FORMAT_CALL_STACK RETURN VARCHAR2;

FORMAT_ERROR_STACK function
This function formats and returns the current error stack. You might use this in an exception handler to

examine the sequence of errors raised. The specification is:

FUNCTION DBMS_UTILITY.FORMAT_ERROR_STACK RETURN VARCHAR2;

GET_TIME function
This function returns the number of 100ths of seconds which have elapsed from an arbitrary time. Without

GET_TIME, Oracle functions can only record and provide elapsed time in second intervals, which is a very

coarse granularity in today's world of computing. With GET_TIME, you can get a much finer understanding

of the processing times of lines in your program. The specification is:

FUNCTION DBMS_UTILITY.GET_TIME RETURN NUMBER;

IS_PARALLEL_SERVER function
This function helps determine if the database is running in Parallel Server mode. The specification is:

FUNCTION DBMS_UTILITY.IS_PARALLEL_SERVER RETURN BOOLEAN;

The function returns TRUE if the database is running in Parallel Server mode; otherwise it returns FALSE.

NAME_RESOLVE procedure
This procedure resolves the name of an object into its component parts, performing synonym translations as

necessary. The specification is:

PROCEDURE DBMS_UTILITY.NAME_RESOLVE

 (name IN VARCHAR2,

 context IN NUMBER,

 schema OUT VARCHAR2,

 part1 OUT VARCHAR2,

 part2 OUT VARCHAR2,

 dblink OUT VARCHAR2,

 part1_type OUT NUMBER,

 object_number OUT NUMBER);

The PORT_STRING function
The PORT_STRING function returns a string that uniquely identifies the version of Oracle Server and the

platform or operating system of the current database instance. The specification is:

FUNCTION DBMS_UTILITY.PORT_STRING RETURN VARCHAR2;

TABLE_TO_COMMA procedure
The TABLE_TO_COMMA procedure converts a PL/SQL table into a comma−delimited list. The

specification is:

PROCEDURE DBMS_UTILITY.TABLE_TO_COMMA

 (tab IN uncl_array,

tablen OUT BINARY_INTEGER,

list OUT VARCHAR2);

UTL_FILE

The UTL_FILE package allows your PL/SQL programs to both read from and write to operating system files.

You can call UTL_FILE from within programs stored in the database server or from within client−side

application modules, such as those built with Oracle Forms. You can, therefore, interact with operating system

files both on the local workstation (client) and on the server disks.

UTL_FILE
Before you can read and write operating system files on the server, you must make changes to the INIT.ORA
initialization file of your database instance (this is generally a DBA task). Specifically, you must add one or

more entries for the utl_file_dir parameter. Each line must have this format:

utl_file_dir = <directory>

where <directory> is either a specific directory or a single asterisk. If your entry has this format:

utl_file_dir = *

then you will be able to read from and write to any directory accessible from your server machine. If you want

to enable file I/O for a restricted set of directories, provide separate entries in the INIT.ORA file as shown

below:

utl_file_dir = /tmp/trace

utl_file_dir = /user/dev/george/files

The Oracle user must then have operating system privileges on a directory in order to write to it or read from

it. Finally, any files created through UTL_FILE will have the default privileges taken from the Oracle user.

FCLOSE procedure
Use FCLOSE to close an open file. The specification is:

PROCEDURE UTL_FILE.FCLOSE (file_in UTL_FILE.FILE_TYPE);

FCLOSE_ALL procedure
FCLOSE_ALL closes all of the opened files. The specification is:

PROCEDURE UTL_FILE.FCLOSE_ALL;

FFLUSH procedure
The FFLUSH procedure flushes the contents of the UTL_FILE buffer out to the specified file. You will want

to use FFLUSH to make sure that any buffered messages are written to the file and therefore available for

reading. The specification is:

PROCEDURE UTL_FILE.FFLUSH (file IN FILE_TYPE);

FOPEN function
The FOPEN function opens the specified file and returns a file handle that you can then use to manipulate the

file. The specification is:

FUNCTION UTL_FILE.FOPEN

 (location_in IN VARCHAR2,

 file_name_in IN VARCHAR2,

 file_mode_in IN VARCHAR2)

RETURN UTL_FILE.FILE_TYPE;

GET_LINE procedure
The GET_LINE procedure reads a line of data from the specified file, if it is open, into the provided line

buffer. The specification is:

PROCEDURE UTL_FILE.GET_LINE

 (file_in IN UTL_FILE.FILE_TYPE,

 line_out OUT VARCHAR2);

IS_OPEN function
The IS_OPEN function returns TRUE if the specified handle points to a file that is already open. Otherwise it

returns false. The specification is:

FUNCTION UTL_FILE.IS_OPEN

 (file_in IN UTL_FILE.FILE_TYPE)

RETURN BOOLEAN;

NEW_LINE procedure
The NEW_LINE procedure inserts one or more newline characters in the specified file. The specification is:

PROCEDURE UTL_FILE.NEW_LINE

 (file_in IN UTL_FILE.FILE_TYPE,

 num_lines_in IN PLS_INTEGER := 1);

PUT procedure
The PUT procedure puts data out to the specified file. The PUT procedure is heavily overloaded so that you

can easily call PUT with a number of different combinations of arguments. The specifications are:

PROCEDURE UTL_FILE.PUT

 (file_in UTL_FILE.FILE_TYPE,

 item_in IN VARCHAR2);

PROCEDURE UTL_FILE.PUT (item_in IN VARCHAR2);

PROCEDURE UTL_FILE.PUT

 (file_in UTL_FILE.FILE_TYPE,

 item_in IN DATE);

PROCEDURE UTL_FILE.PUT (item_in IN DATE);

PROCEDURE UTL_FILE.PUT

 (file_in UTL_FILE.FILE_TYPE,

 item_in IN NUMBER);

PROCEDURE UTL_FILE.PUT (item_in IN NUMBER);

PROCEDURE UTL_FILE.PUT

 (file_in UTL_FILE.FILE_TYPE,

 item_in IN PLS_INTEGER);

PROCEDURE UTL_FILE.PUT (item_in IN PLS_INTEGER);

PUT_LINE procedure
The third variation of the PUT feature in UTL_FILE is PUT_LINE. This procedure writes data to a file and

then immediately appends a newline character after the text. The specification is:

PROCEDURE UTL_FILE.PUT_LINE

(file_in UTL_FILE.FILE_TYPE,

 item_in IN VARCHAR2);
